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Due Wednesday, th December 

Jacob Lewis Bourjaily

Problem 1
Consider a gyroscope moving in circular orbit of radius R about a static, spherically-symmetric planet

of mass m.
a. We are to derive the equations of motion for the gyroscopic spin vector as a function of azimuthal

angle and show that the spin precesses about the direction normal to the orbital plane.

This calculation will be far from elegant, and will probably not give rise to much insight.
Nevertheless, we start by recalling the Lagrangian describing a particle’s worldline(in
the θ = π

2 plane) in a static, isotropic spacetime,

L = −gabu
aub = f(r)(ut)2 − 1

f(r)
(ur)2 − r2(uϕ)2, (1.1)

where ua ≡ dxa

dτ for some affine parameter τ . Because our analysis will be limited
to circular geodesics, we will not have much use for the ur coordinate; however,
its equation of motion will be necessary to relate the various integrals of motion.
First observe that uϕ is non-dynamical in the Lagrangian and so it gives us our first
integral of motion,

J ≡ r2uϕ. (1.2)

For circular geodesics, ua will of course only have 0 and ϕ components; ut is also non-
dynamical, and so we are free to set ut by the normalization of the affine parameter
τ :

u2 = −gabu
aub = f(R)(ut)2 − J2

R2
≡ 1, =⇒ ut =

√
1

f(R)

(
1 +

J2

R2

)
. (1.3)

Now, it is easy to see that the equation of motion for the r-component is

−2
r̈

f(r)
+ 2

ṙ2

f2(r)
f ′(r) = − ṙ2

f2(r)
− 2

J2

r3
+ f ′(r)(ut)2. (1.4)

Because we are looking for solutions where both ṙ and r̈ vanish—and r = R—we see
at once that this implies the relation

J2 =
1
2
f ′(R)(ut)2R3 =

m

R2

R4

(R− 2m)

(
1 +

J2

R2

)
,

=
mR2

R− 2m

1
1− m

R−2m

,

=
mR2

R− 3m
. (1.5)

Above, we made use of the definition of the Schwarzschild metric’s f(r) = 1 − 2m
r .

We have now completely specified the circular geodesic of radius R in which we are
interested.

The direction of a gyroscope’s spin is therefore simply a vector Sa which satisfies the
orthogonality condition uaSbgab = 0 along the geodesic. Recall that two parallelly-
transported vectors have the property that the gradient of their scalar product van-
ishes. This immediately allows us to write down the equation for the evolution of
the components of Sa along τ ,

dSa

dτ
= Γb

acSbu
c, (1.6)

1
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which, upon using the Christoffel symbols for the Schwarzschild metric1, becomes

dSt

dτ
= Γr

ttSru
t =

1
2
f(R)f ′(R)Sru

t =
1
2

√
1

f(R)

(
1 +

J2

R2

)
Sr; (1.7)

dSr

dτ
= Γt

rtStu
t + Γϕ

rϕSϕuϕ =
f ′(R)
2f(R)

√
1

f(R)

(
1 +

J2

R2

)
St +

J

R3
Sϕ; (1.8)

dSθ

dτ
= Γϕ

θϕSϕuθ + Γθ
θrSθu

r + Γr
θθSru

θ = 0; (1.9)

dSϕ

dτ
= Γθ

ϕϕSθu
ϕ + Γr

ϕϕSru
ϕ = − J

R
f(R)Sr. (1.10)

This almost completes our analysis. Indeed, notice that the above system of equations
implies that the θ-component of the gyroscope’s spin is fixed. All the motion of Sa

as it is transported along τ is confined to the plane normal to θ̂. Therefore, we may
conclude that the gyroscope will precess about the axis normal to its orbital plane.

The finicky reader may object that the system of equations (1.6-9) are over-specified. To
be thorough we should eliminate redundancy. The first of the relations among these
expressions comes from the orthogonality condition on the spin vector Saua = 0. In
components this reads

Stu
t + Sϕuϕ = 0 =⇒ St

√
1

f(R)

(
1 +

J2

R2

)
= − J

R2
Sϕ. (1.11)

Also, it is more physically interesting to compute evolution relative to the angle ϕ as
observed by a stationary observer on the planet. Replacing St in favour of Sϕ and
making us of the fact dτ

dϕ = R2

J ,

dSt

dϕ
=

R2

2J

√
1

f(R)

(
1 +

J2

R2

)
Sr;

dSr

dϕ
=

(
1
R
− f ′(R)

2f(R)

)
Sϕ;

dSϕ

dϕ
= −Rf(R)Sr;

dSθ

dϕ
= 0.

The last redundancy to take care of comes from the geodesic equation for SaSbgab—
namely, that this scalar is preserved. Let us choose to normalize SaSbgab = +1 so
that

1 = − 1
f(R)

S2
t + f(R)S2

r +
1

R2
S2

θ +
1

R2
S2

ϕ,

=
1

R2
S2

ϕ

(
1− J2

R2

1(
1 + J2

R2

)
)

+ f(R)S2
r +

1
R2

S2
θ ,

=
S2

ϕ

(R2 + J2)
+ f(R)S2

r +
1

R2
S2

θ .

Bearing in mind that Sθ is a constant of motion, me may therefore write

S2
ϕ = f(R)

(
R2 + J2

) (
1

f(R)
− 1

f(R)R2
S2

θ − S2
r

)
or S2

r =
1

f(R) (R2 + J2)

(
(R2 + J2)− (R2 + J2)

R2
S2

θ − S2
ϕ

)
.

(1.12)
The two substantive equations of motion are clearly dSr

dϕ and dSϕ

dϕ . Squaring the equations
derived above, and using the normalization condition to reexpress unlike components,

1And specializing to the obvious coordinate choice θ 7→ π
2

everywhere it is encountered.
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we find(
dSr

dϕ

)2

=
(

1
R
− f ′(R)

2f(R)

)2

f(R)
(
R2 + J2

) (
1

f(R)
− 1

f(R)R2
S2

θ − S2
r

)
, (1.13)

(
dSϕ

dϕ

)2

= R2f(R)2
1

f(R) (R2 + J2)

(
(R2 + J2)− (R2 + J2)

R2
S2

θ − S2
ϕ

)
. (1.14)

Despite how horrendous these equations look at first glance, the structure present is very
simple. Notice that any function g(ϕ) ≡ α cos(βϕ) (or g(ϕ) = α sin(βϕ)) satisfies
the differential equation

(
d

dϕ
α cos(βϕ)

)2

=
(

dg

dϕ

)2

= β2
(
α2 − g2(ϕ)

)
. (1.15)

The initial conditions will determine the coefficients β, α, but the general result is
now complete2.

b. If the gyroscope studied in part (a) is observed to have its spin entirely in the orbital plane, then
how much precession is observed? What is the precession observed in the case of a satellite in low-earth
orbit?

When we finished part (a), we had done everything necessary to determine the precession
of a gyroscope in circular orbit given suitable boundary conditions. In the case of
a gyroscope with spin lying in its orbital plane, Sθ = 0. This greatly simplifies our
algebra. Let us proceed to simplify the expressions (1.13) and (1.14).

Using the expression for the angular momentum J (1.5) derived above, expanding, and
collecting terms, we find

(
dSr

dϕ

)2

=
(2f(R)−Rf ′(R))2

4R2f(R)
(
R2 + J2

) (
1

f(R)
− S2

r

)
,

=
(2f(R)−Rf ′(R))2

4R(R− 2m)
R2 (R− 2m)

(R− 3m)

(
1

f(R)
− S2

r

)
,

=
(R− 2m−m)2

R

1
(R− 3m)

(
1

f(R)
− S2

r

)
,

=
R− 3m

R

(
1

f(R)
− S2

r

)
.

As described in part (a), a solution to this differential equation is of the form
α cos(βϕ).If we define ϕ so that Sr is maximum when ϕ = 0, we have

∴ Sr(ϕ) =

√
R

R− 2m
cos

(√
R− 3m

R
ϕ

)
. (1.16)

‘óπερ ’έδει πoι�ησαι

We can follow the same analysis, or simply differentiate this to obtain Sϕ. Either way,
one finds that

∴ Sϕ(ϕ) = −R

√
R− 2m

R− 3m
sin

(√
R− 3m

R
ϕ

)
. (1.17)

‘óπερ ’έδει πoι�ησαι

Using the fact that Sa is a unit covector, we know that the angle between Sa(0) and
Sa(2πn) after n orbits will be given by

cos(ϑ) = f−1(R)f(R) cos

(√
R− 3m

R
2πn

)
, or, ϑ = 2πn

√
R− 3m

R
, (1.18)

which is well-approximated by

δϑ ' 3m

R
πn. (1.19)

For a low-earth orbit satellite in circular motion, we therefore expect the gyroscopic
precession to be on the order of 1.66× 10−9 degrees per orbit.

2If you had hoped to see us simplify these expressions enormously, please read our solution to part (b) below.
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Problem 2
Consider a +-dimensional AdS spacetime described by the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3, where f(r) = 1 + r2 − µ

r2
. (2.1)

We are to determine the radial coordinate of the black hole horizon, calculate the proper time of a
massive object to free-fall from the surface of the black hole to the singularity at r = 0, and determine
the radius and period of the null-circular orbit.

The horizon radius is that for which f(r) vanishes. A child’s experience with the qua-
dratic formula is sufficient to see that there is exactly one real root of f(r) and this
corresponds to a horizon radius of

∴ rh =

√
1
2

(√
4µ2 + 1− 1

)
. (2.2)

‘óπερ ’έδει πoι�ησαι

To calculate the proper time for free-fall from the horizon, we need to quickly derive
the equations for motion in only the r-direction. Because we’ll need the angular
dependence later, we’ll start a bit more generally. First, look at the Lagrangian for
the particle’s motion (its worldline),

L = −gabu
aub = f(r)ṫ2 − 1

f(r)
ṙ2 − r2ϕ̇2. (2.3)

Now, as always, a ‘˙’ indicates differentiation with respect to an affine parameter, say
τ , along the worldline of the particle. We will eventually impose the normalization
condition (think Lagrange multipliers)

κ ≡ −gabu
aub, (2.4)

where κ = 1 for time-like worldlines and κ = 0 for null. The first thing that should
be apparent form the Lagrangian is that there are two non-interacting degrees of
freedom, ṫ and ϕ̇, giving rise to two integrals of motion3

E ≡ f(r)ṫ, and J ≡ r2ϕ̇. (2.5)

Now, in the case of purely radial motion of a massive object, J = 0 and κ = 1; so we
are left with only

1 =
1

f(r)
E2 − 1

f(r)
ṙ2, =⇒ ṙ2 = E2 − f(r). (2.6)

Notice that this means that E must be chosen so that ṙ2 = 0 = E2 − f(R) for some R.
In the problem under consideration, we want to find the motion of an object dropped
from rest at R = rh—and rh is defined to be such that f(rh) = 0. Therefore, E2 = 0
for our present problem, and

dr

dτ
=

√
−f(r); (2.7)

which is easy enough to formally invert:

τ =
∫ rh

0

dr√
−f(r)

. (2.8)

Our computer algebra software had no difficulty evaluating this, showing that

∴ τ =
π

4
− 1

2
arccot (2

√
µ) . (2.9)

‘óπερ ’έδει πoι�ησαι

3We could have framed this discussion in terms of Killing fields, but we’ll stick to Euler while we can.
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Lastly, we are asked to find the radius at which light can orbit circularly, and determine
the coordinate time of this orbit’s period. To do this, we need only to re-instate J
into our expression for ṙ2 and set κ → 0 for null geodesics. Written suggestively, this
gives

1
2
ṙ2 +

1
2
f(r)

J2

r2
=

1
2
E2. (2.10)

Reminiscent of effective potentials, we are inspired to consider an analogue problem
in +-dimensions governed by the effective potential

Veff =
J2

2r2

(
1 + r2 − µ

r2

)
. (2.11)

This effective potential has only one turning point, at

−J2

r3
+ 2

µJ2

r5
= 0 =⇒ r =

√
2µ. (2.12)

‘óπερ ’έδει πoι�ησαι

This is the radius at which there are circular, null geodesics—as evidenced by the fact
that ṙ = 0 at this radius. Inserting r =

√
2µ into (2.10),

E2 = f(
√

2µ)
J2

2µ
= J2

(
1 +

1
4µ

)
=⇒ J2

E2
=

4µ

4µ + 1
. (2.13)

This is needed for us to compute the coordinate-time orbit period. Recall from our
definitions of E and J that

dϕ

dt
=

dϕ

dτ

dτ

dt
=

J

r2

f(r)
E

, (2.14)

—which when combined with the above implies

dϕ

dt
=

1
2

√
4µ + 1

µ
. (2.15)

This is trivially integrated. We find that the coordinate time of one orbit is

∴ tp = 4π

√
µ

4µ + 1
. (2.16)

‘óπερ ’έδει πoι�ησαι

Problem 3
Consider a clock in circular orbit at radius R = 10m about a spherically symmetric star.
a. We are to determine the proper time of the R = 10m orbit.

We can draw heavily on our work above. Using the notation and conventions of problem
one, we see that

τp =
∫

dτ =
∫

dτ

dϕ
dϕ =

R2

J

∫
dϕ = 2π

R2

J
.

Using our equation (1.5) for J at a given R, we find

∴ τp = 2π
R
√

R− 3m√
m

. (3.a.1)

‘óπερ ’έδει πoι�ησαι

For the particular question at hand, r = 10m, we find the period to be

τp = 20
√

7πm. (3.a.2)
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b. If once each orbit the clock transmits a signal to a distant observer, what time interval does
this observer observe?

The time coordinate t is precisely the time observed by a distant observer in Schwarzschild
geometry. Therefore, we simply modify the calculation above as follows.

tp =
∫

dt =
∫

dt

dτ

dτ

dϕ
dϕ = 2π

R2

J

√
1

f(R)

(
1 +

J2

R2

)
= 2π

R3/2

√
m

. (3.b.1)

‘óπερ ’έδει πoι�ησαι

We point out that this agrees identically with Kepler’s third law.
For R = 10m we find

tp = 20
√

10πm. (3.b.2)

c. If another observer is stationed in stationary orbit at R = 10m, what time do their clocks report
as the orbit period?

The proper time of a shuttle on a fixed distance from the origin is given by

∆τ2 =
(

1− 2m

R

)
∆t2 + 0; (3.c.1)

∴ τp =
2πR3/2

√
m

√
1− 2m

R
= 40

√
2π. (3.c.2)

d. We are to redux the calculation of part (b), this time for the case of an orbit at R = 6m where
m = 14M¯ and explain why this bound is interesting.

It is not very challenging to simply put real numbers into our calculation above; we find

tp = 2π
R3/2

√
m

= 2× 10−8 s. (3.d.1)

The reason why this is the minimum for fluctuations to be observed from x-ray sources
is that R = 6m is the minimum radius at which there is a stable circular orbit.

e. If forty years go by according to the watch of a distant observer, how long has passed on a spaceship
orbiting at R = 6m for m = 14M¯.

The one thing that both observers will agree on is that during the interval in question
the orbiting observer made 6.6× 1016 orbits; this was of course calculated using the
result of part (b) above. Using part (a), we learn that the person living inside the
orbiting spaceship observed 28 years pass to complete these 6.6× 1016 orbits.


